If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-105.5x-182=0
a = 4; b = -105.5; c = -182;
Δ = b2-4ac
Δ = -105.52-4·4·(-182)
Δ = 14042.25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-105.5)-\sqrt{14042.25}}{2*4}=\frac{105.5-\sqrt{14042.25}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-105.5)+\sqrt{14042.25}}{2*4}=\frac{105.5+\sqrt{14042.25}}{8} $
| (3x+24)(11x-40)=180 | | 4c=10-6c | | 8x2+24x+18=0 | | 40-7z=5(z-4) | | 8x-11=-2+5x | | 3a2-14a+15=0 | | 0.6y+4=9.4 | | 25+5y=7y+20 | | 3w+-6=9w+24 | | 55/168=x/100 | | 7=23-2f | | -.55x=-6 | | 18=(x-5)/2 | | 5(u+2)+3(u+5)=1 | | −14x=7 | | 49x=7^x | | 1/2x-2/5x=1/10x | | 3+65x=53x+4 | | 17+r=9 | | 5x+8=4x+28 | | 42=11+x | | 2x-3+12345=1 | | 2x-3+6=1 | | 8x-20=2x+60 | | 4x^2+16x+12=5 | | 1/5(2−x2)−3/10(1−x2)=17/20 | | 1/5(2−x2)−310(1−x2)=17/20 | | 42y-42=0 | | 3(x+1)+3(2x+5)9=x+2 | | 8q-5q=7 | | 3/8=b/24 | | x*0.08=20 |